# A New Synthesis of All Four Stereoisomers of 2-(2,3-Di hydroxypropyl)piperidine via Iterative Asymmetric Dihydroxylation To Cause Enantiomeric Enhancement. Application to Asymmetric Synthesis of Naturally Occurring Piperidine-Related Alkaloids 

Hiroki Takahata,*,† Minoru Kubota, ${ }^{\dagger}$ and Nobuo Ikota ${ }^{\ddagger}$<br>Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-0194, J apan, and National Institute of Radiol ogical Sciences, 4-9-1 Anagawa, Inageku, Chiba 263-8555, J apan<br>Received J une 28, 1999


#### Abstract

Both enantiomers of 2-(2-propenyl)piperidine $\mathbf{1}$ ( $76-88 \%$ ee), prepared via the first asymmetric dihydroxylation (AD) of 5-hexenyl azide, underwent the second AD to provide all four of the stereoisomeric 2-(2,3-dihydroxypropyl) pi peridines 2 with enantiomeric enhancement ( $>98 \%$ ee). An asymmetric synthesis, starting from 2, of several 2-(2-hydroxyal kyl)piperidine alkaloids [(-)hal osaline, (+)-N-methylallosedridine, (+)-8-ethylnorl obelol, (+)-sedridine, (+)-allosedridine, (-)allosedridine, and (+)-N-methylsedridine] and the ant defense alkaloids [(+)-tetraponerine-3 (T3), T-4, T-7, and T-8] is demonstrated.


## Introduction

Biol ogically active alkaloids of the substituted piperidine ring system have been the target of considerable synthetic efforts. ${ }^{1}$ The development of methods for the asymmetric synthesis of 2 -substituted piperidines re mains an area of substantial interest. ${ }^{2}$ During our continuing studies on asymmetric synthesis of piperidine alkaloids, ${ }^{3}$ we recently achieved a new asymmetric synthesis of both enantiomers of 2-(2-propenyl) piperidine 1 via the Sharpless asymmetric dihydroxylation (AD) of 5 -hexenyl azide, the design leading to 2 -substituted piperidine and related alkaloids (Scheme 1). ${ }^{4}$ However, the precedented AD established by the Sharpless group suggested that enantiomeric excess (ee) in the case of terminal olefins might be modest except for arylvinyls such as styrene. ${ }^{5}$ In practice, the ees of $\mathbf{1}$ and ent- $\mathbf{1}$ were $76-88 \% .{ }^{4}$ Our interest in this field has been focused on the synthetic application of the double AD to cause enantiomeric enhancement (or amplification). ${ }^{6}$ We anticipate that repeated AD for the terminal ol efins might

[^0]improve the stereoselectivity (ee) on the basis of the following consideration: The first AD (AD-mix- $\alpha$ ) reaction produces the major ( S ) and minor ( R ) enantiomers. After the introduction of the terminal olefin followed by the second AD (AD-mix- $\alpha$ ), four products result: ( $\mathrm{S}, \mathrm{S}$ )-, $(S, R)-,(R, S)$-, and ( $R, R$ )-isomers. The relationship between the desired ( $\mathrm{S}, \mathrm{S}$ )-isomer and the undesired ( $\mathrm{S}, \mathrm{R}$ )and ( $R, S$ )-isomers is diastereomeric. Very little of the mirror image ( $R, R$ )-isomer is formed, and therefore the enantiomeric purity of the desired ( $\mathrm{S}, \mathrm{S}$ )-isomer will be high. On the other hand, the diastereomer of a mixture of ( $\mathrm{S}, \mathrm{R}$ )- and ( $\mathrm{R}, \mathrm{S}$ )-isomers could show low ee. ${ }^{7}$
We now describe our findings that additional AD of $\mathbf{1}$ and ent-1 afforded all four stereoisomers of 2-(2,3di hydoxypropyl) piperidine (2) with enantiomeric enhancement, and demonstrate the synthetic utility of $\mathbf{2}$ by an expeditious asymmetric synthesis of the 2-(2-hydroxyalkyl) pi peridine alkaloids such as ( - )-halosaline, ( + )-N methylallosedridine, ( + )-8-ethyl norlobelol-I, ( + )-sedridine, ( + )-allosedridine, ( - -allosedridine, and ( + )-Nmethylsedridine and the ant defense alkaloids ( + )-tetraponerine-3 (T-3), T-4, T-7, and T-8 (Chart 1) in short steps. ${ }^{8}$

## Results and Discussion

Synthesis of All Four Stereoisomers of 2-(2-Hydroxyalkyl)piperidine via Iterative Asymmetric Dihydroxylation. An asymmetric synthesis of 2-(2propenyl)piperidines $\mathbf{1}$ and ent- $\mathbf{1}$ via the first AD (PYR ligand) reaction of 5 -hexenyl azide has been performed by us. ${ }^{4}$ On the basis of the above principle, the second AD [(DHQ) $)_{2}$ PYR ligand ${ }^{9}$ reaction of the terminal ol efin

[^1]
a Conditions: (a) cat. $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} /$ cat. ( DHQ$)_{2} \mathrm{PYR}, / \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} / \mathrm{K}_{2} \mathrm{CO}_{3}$; (b) cat. $\mathrm{K}_{2} \mathrm{OsO} 4 \cdot 2 \mathrm{H}_{2} \mathrm{O} /$ cat. (DHQD $)_{2} \mathrm{PYR}, / \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} / \mathrm{K}_{2} \mathrm{CO}_{3}$, ref 4; (a) epoxidation ( $1, \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{3} / \mathrm{PPTS} ; 2, \mathrm{CH}_{3} \mathrm{COBr} ; 3, \mathrm{~K}_{2} \mathrm{CO}_{3}$ ); (b) vinylmagnesium bromide/CuBr-(CH $)_{2} \mathrm{~S}$; (c) $\mathrm{MsCl} / \mathrm{pyridine;} \mathrm{(d)}$ $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$; (e) $\mathrm{CbzCl} / \mathrm{K}_{2} \mathrm{CO}_{3}$.

## Chart 1




T-3


T-8
in $\mathbf{1}$ was carried out to afford a readily separable mixture of the major diastereomer [2R-(2S)]-2 (>98\% ee) and the minor diastereomer [2R-(2R)]-2 (54\% ee). These results containing three other examples are shown in Table 1. Since the enantioselectivities of four all of the major diastereomers of $\mathbf{2}$ were found to be more than $98 \%$ ee, the enantiomeric enhancement by repeated AD was exemplified.

Asymmetric Synthesis of 2-(2-Hydroxyalkyl)piperidine Alkaloids. With all four homochiral 2-(2,3dihydroxypropyl)piperidines 2 in hand, we focused our attention on their transformation into biol ogically active 2-(2-hydroxyalkyl)piperidine alkaloids. Our synthesis began with the epoxidation of 2. The four diols 2 were converted into the four epoxides $\mathbf{3}$ by the Sharpless onepot procedure $\left(1, \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{3} / \mathrm{PPTS} ; 2, \mathrm{CH}_{3} \mathrm{COBr} ; 3, \mathrm{~K}_{2-}\right.$ $\left.\mathrm{CO}_{3}\right)^{10}$ in good yields (Scheme 2). Having obtained these results, the first asymmetric synthesis of ( - )-halosarine (4), ${ }^{11}$ isolated from Haloxyl on salicornicum, was undertaken. The regioselective cleavage of the epoxide ring in [2R-(2S)]-3 with vinylmagnesium bromide in combination with a cuprous bromide-dimethyl sulfide complex was performed to yield the al cohol 5 in 95\% yield. Exposure

[^2]of 5 to an atmosphere of hydrogen in the presence of Pd $(\mathrm{OH})_{2}$ as a catalyst in MeOH caused simultaneous reduction of its double bond and debenzyloxycarbonylation to give the desired ( - )-4 \{[ $\alpha]_{\mathrm{D}}-19.0^{\circ}$ (EtOH), lit. ${ }^{11 \mathrm{~b}}$ $\left.[\alpha]_{\mathrm{D}}-19.5^{\circ}(\mathrm{EtOH})\right\}$ in quantitative yield.
Two [2R-(2S)]-2-(2-hydroxyalkyl)piperidines, (+)-Nmethylallosedridine (6), ${ }^{12}$ isolated from Sedum sarmentosum, and (+)-8-ethylnorlobelol-I (7), ${ }^{13}$ produced by Loberia inflata, are found. So far, an asymmetric synthesis of these alkaloids, to our knowledge, has not been reported. We began with the synthesis of $\mathbf{6}$. Reduction of the epoxide $[2 \mathrm{R}-(2 \mathrm{R})]-3$ with $\mathrm{LiAlH}_{4}$ gave $\mathbf{6}\left\{[\alpha]_{\mathrm{D}}+78^{\circ}\right.$ (EtOH), lit. $\left.{ }^{12 \mathrm{~b}}[\alpha]_{\mathrm{D}}+67^{\circ}(96 \% \mathrm{EtOH})\right\}$ as a single product in $89 \%$ yield. Its spectral data were identical with those reported. ${ }^{14}$ Treatment of [2R-(2R)]-3 with lithium dimethylcuprate resulted in the cleavage of the epoxide ring to provide the alcohol 8, which was converted into [2R-(2S)]-7 $\left\{\mathrm{mp} \mathrm{53-4}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+10.2^{\circ}(\mathrm{EtOH})\right\}$ by hydrogenolysis in $82 \%$ overall yield. Surprisingly, both its melting point and specific rotation were obviously different from the reported values $\left\{\mathrm{mp} 87^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}+22.3^{\circ}\right.$ $(\mathrm{EtOH})\} .{ }^{13}$ We considered the absolute configuration of natural (+)-8-ethylnorlobelol-I could be 2S-(2S) on the basis of the following speculation. Since halosarine (4) of [2R-(2R)] configuration appears levorotatory, both [2R-(2R)]-7 and [2S-(2R)]-7 will be levorotatory. Accordingly, only [2S-(2S)] remains among three possible configurations. In fact, it is known that sedridine (9) of [2S-2(S)] configuration is dextrorotatory. ${ }^{15}$ In practice, [2S-2(S)]7 was synthesized from the epoxide [2S-2(R)]-3 via 10
(12) (a) Marion, L.; Chaput, M. Can. J. Res. 1949, 27, 215. (b) Beyerman, H. C.; Bordes, B. S. L.; Maat, L.; Warnaar, F. M. Red. Trav. Chim. Pays-Bas 1972, 91, 1441. (c) Kim, J. H.; T'Hart, H.; Stevens, J . F. Phytochemistry 1996, 41, 1319.
(13) Schöpf, C.; K auffmann, T. J ustus Liebigs Ann. Chem. 1957, 608, 88.
(14) Schneider, M. J.; Brendze, S.; M ontali, J. A. Phytochemistry 1995, 39, 1387.
(15) (a) Beyerman, H. C.; Maat, L.; Van Veen, A.; Zweistra, A.; von Philipsborn, W. Red. Trav. Chim. Pays-Bas 1965, 84, 1367. (b) Murahashi, S. Imada, Y.; Kohno, M.; Kawakami, T. Synlett 1993, 395. (c) Louis, C.; Hootelé, C. Tetrahedron: Asymmetry 1997, 8, 109. (d) Littler, B. J.; Gallagher, T.; Boddy, I. K.; Riordan, P. Synlett 1997, 22.

Table 1. AD Reaction of Both Enantiomers of 1

| substrate 1 | ligand | major compd $\mathbf{2}$ | yield (\%) | (ee (\%)) | minor compd 2 | yield (\%) | (ee (\%)) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (DHQ) ${ }_{2} \mathrm{PYR}^{\text {a }}$ | [2R-(2S)]-2 | 70 | (>98) | [2R-(2R)]-2 | 21 | (54) |
| 1 | (DHQD) ${ }_{2} \mathrm{PYR}^{\text {b }}$ | [2R-(2R)]-2 | 69 | (>98) | [2R-(2S)]-2 | 22 | (54) |
| ent-1 | (DHQ)2 ${ }^{\text {PY }}$ ( ${ }^{\text {P }}$ | [2S-(2S)]-2 | 70 | (>98) | [2S-(2R)]-2 | 22 | (72) |
| ent-1 | ( DHQD$)_{2} \mathrm{PYR}$ | [2S-(2R)]-2 | 74 | (>98) | [2S-(2S)]-2 | 14 | (47) |

${ }^{\mathrm{a}}(\mathrm{DHQ})_{2} \mathrm{PYR}=$ hydroquinine 2,5-diphenyl-4,6-pyrimidinediyl diether. ${ }^{\mathrm{b}}(\mathrm{DHQD})_{2}$ PYR $=$ hydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether.

${ }^{\text {a }}$ Conditions: (a) (1) ( MeO$)_{3} \mathrm{CMe} / \mathrm{PPTS}$; (2) MeCOBr ; (3) $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$; (b) vinylmagnesium bromide/ $\mathrm{Me} \mathrm{e}_{2} \mathrm{~S}-\mathrm{CuBr}$; (c) $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}$; (d) $\mathrm{LiAlH}_{4}$; (e) Me2CuLi; (f) Super-Hydride.
by the analogous procedure described for [2R-(2S)]-7. Both the melting point ( $\mathrm{mp} 88-89^{\circ} \mathrm{C}$ ) and the specific rotation $\left\{[\alpha]_{D}+25.8^{\circ}(\mathrm{EtOH})\right\}$ are almost identical with those reported (vide supra). ${ }^{13}$ It is thus concluded that the absolute configuration of natural (+)-8-ethylnorlo-belol-I is $2 \mathrm{~S}-(2 \mathrm{~S}) .{ }^{16}$

Next, an asymmetric synthesis of [2S-(2S)]-2-(2-hydroxypropyl) pi peridine, (+)-sedridine (9), ${ }^{15 a}$ isolated from Sedum acre, was performed. Super-Hydride-induced reduction of [2S-2(R)]-3 resulted in only ring-cleavage to yield the alcohol [2S-(2S)]-11, which was hydrogenated to give $9\left\{[\alpha]_{D}+28.4^{\circ}(\mathrm{EtOH})\right.$, lit. $\left.{ }^{15 \mathrm{~b}}[\alpha]_{\mathrm{D}}+28.5^{\circ}(\mathrm{EtOH})\right\}$ in $95 \%$ yield. Its spectral data were in agreement with those reported. ${ }^{15}$ In a similar fashion, the synthesis of both enantiomers ( $\mathbf{1 2}$ and ent-12) of allosedridine, ${ }^{17,18}$ isolated from Sedum nudum, was achieved from [2R-

[^3](2R]- and [2S-(2S)]-3, respectively, using a two-step sequence. Finally, N-methylsedridine (13), ${ }^{14,18}$ isolated from Sedum pol ytrichoides, was synthesized by reduction of [2S-2(R)]-3 with $\mathrm{LiAlH}_{4}$ in $99 \%$ yield. Its spectral data were consistent with those reported. ${ }^{14}$

Asymmetric Synthesis of Ant Defense Alkaloids. Eight toxic alkaloids with an original tricyclic structure are found in New Guinean ant venom: tetraponerine-1 to tetraponerine-8 (T-1 to T-8) isolated from Tetraponera sp. by Braekman et al. ${ }^{19}$ So far, the synthesis of T-8 has been reported several times in both racemic and chiral forms, ${ }^{20}$ whereas asymmetric synthesis of others except

[^4]

Scheme 3a


14


15




${ }^{\text {a }}$ Conditions: (a) vinylmagnesium bromide/CuBr-Me2S; (b) succinimide/Ph ${ }_{3}$ P/DEAD; (c) $\mathrm{H}_{2} / 10 \% \mathrm{Pd}-\mathrm{C} / 4$ atm; (d) $\mathrm{LiAlH}_{4}$; (e) $\mathrm{Bu}_{2} \mathrm{CuLi}$; (f) $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2} / 4 \mathrm{~atm}$.
for T-7 (twice) has been reported only once. Among them, the synthesis of ( + )-T-3,4,7,-8 was performed from the epoxides [2R-(2S)]- and [2R-(2R)]-3. Our synthesis of (+)-T-3 began with the cleavage of [2R-(2R)]-3 with the Grignard reagent. According to the method described for 5, the treatment of [2R-(2R)]-3 with vinylmagnesium bromide in the combination with a cuprous bromidedimethyl sulfide complex afforded the alcohol 14 in $90 \%$ yield (Scheme 3). The Mitsunobu reaction of $\mathbf{1 4}$ with succinimide provided the imide 15 in $70 \%$ yield. Catalytic reduction of 15 using $10 \%$ palladium carbon under hydrogen atmosphere at 4 atm resulted in conversion in a single step into the tricyclic Iactam 16 as a single isomer in $82 \%$ yield. ${ }^{21}$ Finally, reduction of the lactam 16 with $\mathrm{LiAlH}_{4}$ gave ( + )-T-3 $\left\{[\alpha]^{25} \mathrm{D}+34.6^{\circ}\left(\mathrm{CHCl}_{3}\right)\right\}$ ( $80 \%$ ), identical in all respects with those reported. ${ }^{20 f}$ Similarly, the synthesis of $(+)-\mathrm{T}-4\left\{[\alpha]^{25_{\mathrm{D}}}+107.3^{\circ}\left(\mathrm{CHCl}_{3}\right)\right\}$ was achieved in a three-step sequence from 5 in $43 \%$ overall yield. Next, we initiated the synthesis of (+)-T7. The regioselective cleavage of [2R-(2R)]-3 with lithium dibutylcuprate afforded the alcohol 19 in 79\% yield, which was transformed in a three-step sequence into (+)-

[^5]
## Scheme 4


$\mathbf{T}-7\left\{[\alpha]^{25} \mathrm{D}+30.9^{\circ}\left(\mathrm{CHCl}_{3}\right)\right\}$ in 51\% overall yield from 19. In an analogous way, (+)-T-8 $\left\{[\alpha]^{25} \mathrm{D}+98.2^{\circ}\left(\mathrm{CHCl}_{3}\right)\right\}$ was obtained from [2R-(2S)]-3 in 35\% four-step yields.

Since all four tricyclic diaza compounds are isolated as single diastereomers, these reductive cyclizations proceed highly stereoselectively. The formation of the compounds can be explained as follows: a hydrogenolysis of $\mathrm{N}-\mathrm{Cbz}$ followed by condensation of the resulting secondary amine with the imide occurred to provide tricyclic iminium compound $\mathbf{A}$, which was reduced by hydrogen to give the lactam; alternatively, both the hydrogenolysis of $\mathrm{N}-\mathrm{Cbz}$ and a reduction of imide proceeded to give a secondary amino acyliminium intermediate, B, which was cyclized to afford the lactam (Scheme 4).

## Conclusion

We developed a general access to synthetically useful homochiral 2-(2,3-dihydroxypropyl)piperidines 2 via iterative asymmetric dihydroxylation starting from an achiral 5-hexenyl azide. The two stereogenic centers of 2 were constructed with high enantiomeric enhancement in a sequence of two AD reactions. In practice, we demonstrated the synthetic utility of $\mathbf{2}$ as chiral synthons by the first asymmetric synthesis of several 2-(2-hydroxyalkyl)piperidine alkaloids except for 9. In addition, the asymmetric synthesis of the ant defense alkaloids [(+)-T-3, (+)-T-4, (+)-T-7, and (+)-T-8] has been performed. Extension of this methodology (the enantiomeric enhancement via the 2 -fold or more AD reactions) toward asymmetric synthesis of other biologically active compounds is under investigation.

## Experimental Section

General Procedures. Column chromatography was performed on silica gel (Fuji-Division BW-200 or Merck 60 (no. 9385)) with a medium-pressure apparatus, and a mixture of ethyl acetate/hexane was used as eluent unless otherwise specified. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ unless otherwise specified.
[2R-(2S)]- and [2R-(2R)]-1-Benzyloxycarbonyl-2-(2,3dihydroxypropyl)piperidine [[2R-(2S)]- and [2R-(2R)]-2]. (R)-1-Benzyloxycarbonyl-2-(2-propenyl) pi peridine 1 ( 270 mg , 1.04 mmol ) was added to a mixture of AD-mix ( 1.35 g ), prepared from $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{mg})$, (DHQ) 2 PYR ( 8.7 mg ), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(945 \mathrm{mg})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(220 \mathrm{mg})$ by a known procedure, ${ }^{9}$ tert- $\mathrm{BuOH}(5 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 24 h at the same temperature, sodium sulfite ( 1.5 g ) was added to the mixture. After being stirred for 30 min , the mixture was filtered through a Celite pad. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were washed with brine, dried, and evaporated. The residue was chromatographed using 50\% ethyl acetate-hexane as eluent to yield major diastereomer [2R-(2S)]-2 (213 mg, 70\%) and minor diastereomer [2R-(2R)]2 ( $64 \mathrm{mg}, 21 \%$ ) as oils. The enantiomeric purities were
determined by HPLC analysis (column, DAICEL CHIRALPAC AS), $40^{\circ} \mathrm{C}$, eluent hexane-2-propanol (9:1); flow rate $0.4 \mathrm{~mL} /$ min . The results are shown in Table 1.

Data for [2R-(2S)]-2: $[\alpha]^{25} \mathrm{D}+23.15^{\circ}$ (c 1.310, $\mathrm{CHCl}_{3}$ ); IR (neat) 3418, 3032, 2937, 2866, 1667, 1586, 1498, 1427, 1264, $1175,1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.29(1 \mathrm{H}, \mathrm{ddd}$, $\mathrm{J}=14,11,10.90,3.21 \mathrm{~Hz}), 1.42-1.65(5 \mathrm{H}, \mathrm{m}), 1.76-1.81$ ( 1 $\mathrm{H}, \mathrm{m}), 1.91-1.97(1 \mathrm{H}, \mathrm{m}), 2.425(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.91 \mathrm{~Hz}), 2.77(1$ $\mathrm{H}, \mathrm{td}, \mathrm{J}=13.46,2.78 \mathrm{~Hz}$ ), 3.47-3.60 ( $3 \mathrm{H}, \mathrm{m}$ ), $4.065(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=12.61 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.18 \mathrm{~Hz})$, $5.15(2 \mathrm{H}, \mathrm{s}), 7.32-7.40(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 19.03,25.37,29.30,33.21,39.31,47.19,66.34,67.53,68.49$, 127.84, 128.09, 128.51, 136.36, 156.87; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23^{-}}$ $\mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$293.1627, found 293.1605.

Data for [2R-(2R)]-2: IR (neat) 3421, 2936, 1684, 1430 $\mathrm{cm}^{-1} ; 1 \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41-1.46(1 \mathrm{H}, \mathrm{m}), 1.50-$ $1.64(6 \mathrm{H}, \mathrm{m}), 1.83-1.85(1 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=9.40$ $\mathrm{Hz}), 2.92(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=13.03,1.50 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{br}$ s), $3.68(2$ $\mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=20.08 \mathrm{~Hz})$, $4.06(1 \mathrm{H}, \mathrm{m}), 5.13(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=$ $25.32,12.28 \mathrm{~Hz}$ ), $7.31-7.39(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 18.9,25.5,28.7,33.6,39.7,48.5,66.8,67.3,70.3$, 128.0, 128.2, 128.7, 136.8, 156.0. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ $\left(\mathrm{M}^{+}\right)$293.1627, found 293.1670.
[2R-(2R)]- and [2R-(2S)]-1-Benzyloxycarbonyl-2-(2,3dihydroxypropyl)piperidine [[2R-(2R)]- and [2R-(2S)]-2]. The AD reaction was performed on a 15.4 mmol scale with AD-mix- $\beta$ [used (DHQD) ${ }_{2}$ PYR as ligand] as described in the typical procedure (vide supra). [2R-(2R)]- and [2R-(2S)]-2 were obtained in $69 \%$ and $22 \%$ yields, respectively. [ $\alpha]^{25} \mathrm{D}$ [[2R-(2R)]2] $+39.53^{\circ}$ ( $\mathrm{c} 1.575, \mathrm{CHCl}_{3}$ ).
[2S-(2S)]- and [2S-(2R)]-1-Benzyloxycarbonyl-2-(2,3dihydroxypropyl)piperidine [[2S-(2S)]- and [2S-(2R)]-2]. The AD reaction was performed on a 0.79 mmol scale using (S)-1-Benzyloxycarbonyl-2-(2-propenyl)piperidine 1 with AD-mix- $\alpha$ [used (DHQ) ${ }_{2}$ PYR as ligand] as described in the typical procedure (vide supra). [2S-(2S)]- and [2S-(2R)]-2 were obtained in $70 \%$ and $22 \%$ yields, respectively. [ $\alpha]^{25} \mathrm{D}$ [[2S-(2S)]2] $-40.41^{\circ}$ ( $\mathrm{c} 1.440, \mathrm{CHCl}_{3}$ ).
[2S-(2R)]- and [2S-(2S)]-1-Benzyloxycarbonyl-2-(2,3dihydroxypropyl)piperidine [[2S-(2R)]- and [2S-(2S)]-2]. The AD reaction was performed on a 2.08 mmol scale with AD-mix- $\beta$ [used (DHQD) 2 PYR as ligand] as described in the typical procedure (vide supra). [2S-(2R)]- and [2S-(2S)]-2 were obtained in $74 \%$ and $14 \%$ yields, respectively. [ $\alpha]^{25}$ D [[2S-(2R)]2] $-23.82^{\circ}$ ( $\mathrm{c} 1.135, \mathrm{CHCl}_{3}$ ).
[2R-(2S)]-1-Benzyloxycarbonyl-2-(2,3-epoxypropyl)piperidine [[2R-(2S)]-3]. Trimethyl orthoacetate ( $0.83 \mathrm{~mL}, 6.7$ mmol ) was added to a solution of [2R-(2S)]-2 ( $1.64 \mathrm{~g}, 5.6 \mathrm{mmol}$ ) and PPTS ( $11.3 \mathrm{mg}, 0.045 \mathrm{mmol}$ ) ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.25 \mathrm{~mL})$. After being stirred for 4 h , the reaction mixture was evaporated, and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.25 \mathrm{~mL})$ and acetyl bromide ( $0.54 \mathrm{~mL}, 6.7$ $\mathrm{mmol})$ were successively added to the resulting residue. After being stirred for 45 min , the mixture was evaporated. To a solution of the resulting residue in methanol ( 18.7 mL ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~g}, 7.3 \mathrm{mmol})$, and the reaction mixture was stirred for 2 h . The reaction was quenched with saturated $\mathrm{NH}_{4}-$ Cl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried, and evaporated. The residue was chromatographed using 25\% EtOAc-n-hexane as eluent to yield [2R-(2S)]-3 (1.17 g, 76\%) as an oil: $[\alpha]^{25} \mathrm{~d}+35.46^{\circ}$ (c 2.335, $\mathrm{CHCl}_{3}$ ); IR (neat) 2938, 2862, 1694, 1423, $1265 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35-1.65(7 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.355(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=5.02,2.67 \mathrm{~Hz}), 2.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.775(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $12.93 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{br}$ s), $4.06(1 \mathrm{H}, \mathrm{br}$ s), $4.55(1 \mathrm{H}, \mathrm{br}$ s), $5.11(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.26-7.35(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 19.0,25.6,29.2,33.4,39.5,46.8,49.1,50.4,67.2$, 128.1, 128.1, 128.6, 137.0, 155.6. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ : N, 5.09; C, 69.79; H, 7.69. Found: N, 5.25; C, 69.30; H, 7.46 .
[2R-(2R)]-1-Benzyloxycarbonyl-2-(2,3-epoxypropyl)piperidine [[2R-(2R)]-3]. By a procedure similar to that for the preparation of [2R-(2S)]-3, [2R-(2R)]-2 (1.6 g, 5.45 mmol$)$ was converted in a three-step sequence [(1) PPTS ( $11 \mathrm{mg}, 0.044$ mmol ), trimethyl orthoacetate ( $0.81 \mathrm{~mL}, 6.54 \mathrm{mmol}$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 16 mL ); (2) acetyl bromide ( $0.49 \mathrm{~mL}, 6.54 \mathrm{mmol}$ ); (3) $\mathrm{K}_{2} \mathrm{CO}_{3}-$ ( $981 \mathrm{mg}, 7.10 \mathrm{mmol}$ ), $\mathrm{MeOH}(18 \mathrm{~mL})]$ to [2R-(2R)]-3 (1.16 g,
$77 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+38.21^{\circ}$ (c 1.150, $\mathrm{CHCl}_{3}$ ); IR (neat) 2936, 1694, 1423, $1259 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.38-$ $1.72(7 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}$, qui, J $=7.32 \mathrm{~Hz}), 2.43(1 \mathrm{H}$, br s), $2.67(1 \mathrm{H}, \mathrm{br}$ s), $2.88(2 \mathrm{H}, \mathrm{br}$ d, J $=10.90 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=10.04 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{s}), 5.14(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=31.73,12.50$ $\mathrm{Hz}), 7.28-7.37(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 19.0$, $25.5,28.6,33.0,39.4,46.7,48.9,5.2,67.0,127.8,127.9,128.5$, 137.0, 155.5. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ : $\mathrm{N}, 5.09$; $\mathrm{C}, 69.79$; H , 7.69. Found: N, 4.80; C, 69.82; H, 7.69.
[2S-(2S)]-1-Benzyloxycarbonyl-2-(2,3-epoxypropyl)piperidine [[2S-(2S)]-3]. By a procedure similar to that for the preparation of [2R-(2S)]-3, [2S-(2S)]-2 (144 mg, 0.49 mmol$)$ ) was converted in a three-step sequence [(1) PPTS ( $1.0 \mathrm{mg}, 3.9$ mmol , trimethyl orthoacetate ( $73 \mathrm{~mL}, 0.59 \mathrm{mmol}$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4$ mL ); (2) acetyl bromide ( $44 \mathrm{~mL}, 0.59 \mathrm{mmol}$ ); (3) $\mathrm{K}_{2} \mathrm{CO}_{3}(88 \mathrm{mg}$, $0.63 \mathrm{mmol})$, $\mathrm{MeOH}(1.6 \mathrm{~mL})]$ to $[2 \mathrm{~S}-(2 \mathrm{~S})]-3(95 \mathrm{mg}, 70 \%)$ as an oil: $[\alpha]^{25} \mathrm{D}-38.43^{\circ}$ (c 1.390, $\mathrm{CHCl}_{3}$ ).
[2S-(2R)]-1-Benzyloxycarbonyl-2-(2,3-epoxypropyl)piperidine [[2S-(2R)]-3]. By a procedure similar to that for the preparation of [2R-(2S)]-3, [2S-(2R]-2 (1.65 g, 5.6 mmol$)$ ) was converted in a three-step sequence [(1) PPTS ( $11.3 \mathrm{mg}, 0.045$ mmol, trimethyl orthoacetate ( $0.83 \mathrm{~mL}, 6.7 \mathrm{mmol}$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 16.5 mL ); (2) acetyl bromide ( $0.54 \mathrm{~mL}, 6.7 \mathrm{mmol}$ ); (3) $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $1.0 \mathrm{~g}, 7.3 \mathrm{mmol}$ ), MeOH ( 18.7 mL )] to [2S-(2R)]-3 ( $1.2 \mathrm{~g}, 77 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}-36.14^{\circ}$ (c $5.520, \mathrm{CHCl}_{3}$ ).
[2R-(2R)]-1-Benzyloxycarbonyl-2-(2-hydroxy-4-pentenyl)piperidine (5). To a slurry of $\mathrm{CuBr}-\mathrm{Me}_{2} \mathrm{~S}(14.4 \mathrm{mg}, 0.07$ mmol) in THF ( 1.4 mL ) was added a 1 M vinylmagnesium bromide-THF solution ( $1.10 \mathrm{~mL}, 1.10 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$ with stirring. After the reaction mixture was stirred for 30 min , a solution of [2R-(2S)]-3 (200 mg, 0.73 mmol$)$ in THF $(0.78 \mathrm{~mL})$ was slowly added to it. The mixture was gradually warmed to $-30^{\circ} \mathrm{C}$, stirred for 1.5 h , and quenched with saturated $\mathrm{NH}_{4}-$ Cl . The mixture was diluted with ether, washed with brine, dried, and evaporated. The residue was chromatographed using $13 \%$ EtOAc-hexane as eluent to give 5 ( $210 \mathrm{mg}, 95 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+39.19^{\circ}$ (c 2.650, $\mathrm{CHCl}_{3}$ ); IR (neat) 3447, 3069, 2938, 2864, 1668, 1424, 1353, 1262, 1174, $698 \mathrm{~cm}^{-1}$ ' $^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.10-1.20(1 \mathrm{H}, \mathrm{m}), 1.30-1.66(6 \mathrm{H}, \mathrm{m})$, 1.93 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=13.19 \mathrm{~Hz}$ ), 2.05-2.21 (2 H, m), 2.60-2.70 (1 $\mathrm{H}, \mathrm{m}), 3.30(1 \mathrm{H}, \mathrm{br}$ s), $3.96(1 \mathrm{H}, \mathrm{br}$ d, J $=13.19 \mathrm{~Hz}), 4.03(1$ H, m), 4.42-4.46 (1 H, m), 4.95-5.10 (4 H, m), 5.72-5.80 (1 $\mathrm{H}, \mathrm{m}), 7.18-7.27(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 19.2$, 25.5, 29.4, 37.0, 39.3, 41.2, 47.2, 47.3, 47.5, 47.5, 66.9, 67.1, $67.5,116.8,127.9,128.2,128.4,128.5,128.6,135.5,136.6$, 156.9; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right) 303.1834$, found 303.1814.
(-)-Halosarine (4). A suspension of 5 ( $237 \mathrm{mg}, 0.78 \mathrm{mmol}$ ) and palladium hydroxide $\left(\mathrm{Pd}(\mathrm{OH})_{2}\right)(240 \mathrm{mg})$ in $\mathrm{MeOH}(4.4$ mL ) under a hydrogen atmosphere was stirred for 4 h . The mixture was filtered through a Celite pad, and the filtrate was evaporated. The residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $25 \%$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give $4(134 \mathrm{mg}, 100 \%)$ as a solid: mp $83^{\circ} \mathrm{C}$ (diisopropyl ether); $[\alpha]^{25} \mathrm{D}-18.98^{\circ}$ (c 0.975 , EtOH ), lit. ${ }^{11 \mathrm{~b}}[\alpha]^{25} \mathrm{D}-19.5^{\circ}$ ( $\mathrm{C} 0.6, \mathrm{EtOH}$ ); IR (KBr) 3313, 2930, 2857, $1456 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.91(3 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=6.89 \mathrm{~Hz}), 1.26-1.59(12 \mathrm{H}, \mathrm{m}), 1.78-1.80(1 \mathrm{H}, \mathrm{m}), 2.55$ $(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.54,2.75 \mathrm{~Hz}) 2.81-2.88(1 \mathrm{H}, \mathrm{m}), 3.00-3.05(1$ $\mathrm{H}, \mathrm{m}), 3.84-3.90(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.3$, 19.2, 24.9, 26.2, 31.7, 40.2, 42.2, 47.0, 54.8, 68.9; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}\left(\mathrm{M}^{+}\right)$171.1623, found 171.1635.
(+)-N-Methylallosedridine (6). To a suspension of $\mathrm{LiAlH}_{4}$ ( $19 \mathrm{mg}, 3.12 \mathrm{mmol}$ ) in THF ( 9.3 mL ) was added a solution of [2R-(2R]-3 ( $430 \mathrm{mg}, 1.56 \mathrm{mmol}$ ) in THF $(9.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After being stirred for 1 h at room temperature, the reaction mixture was refluxed for 15 h . To the mixture were successively added $\mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~mL}), 2 \mathrm{~N} \mathrm{NaOH}(0.12 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.36 \mathrm{~mL})$, and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ with ice cooling, and the resulting mixture was stirred for 30 min at room temperature. The mixture was filtered through a Celite pad, and the filtrate was evaporated at room temperature. The residue was chromatographed using $5 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to yield $6(217 \mathrm{mg}, 89 \%)$ as an oil: $[\alpha]^{25} \mathrm{D}+78.53^{\circ}$ (c 2.840, EtOH), lit. ${ }^{12 \mathrm{~b}}[\alpha]^{25} \mathrm{D}+67^{\circ}$ (c 0.9, EtOH 96\%); IR (neat) 3384, 2934, 2856, $2794 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.20 \mathrm{~Hz}), 1.19(1 \mathrm{H}, \mathrm{ddd}$,
$\mathrm{J}=14.32,5.13,2.56 \mathrm{~Hz}), 1.22-1.27(1 \mathrm{H}, \mathrm{m}), 1.36-1.45(2 \mathrm{H}$, m), 1.48-1.54 ( $1 \mathrm{H}, \mathrm{m}$ ), 1.59-1.70 ( $2 \mathrm{H}, \mathrm{m}$ ), 1.81 ( 1 H , ddd, $\mathrm{J}=14.31,10.26,8.76 \mathrm{~Hz}), 2.36(3 \mathrm{H}, \mathrm{s}), 2.38-2.43(1 \mathrm{H}, \mathrm{m})$, $2.57(1 \mathrm{H}, \mathrm{tdd}, \mathrm{J}=7.69,7.69,3.85 \mathrm{~Hz}), 2.94(1 \mathrm{H}$, ddd, J = $9.84,6.84,3.20 \mathrm{~Hz}$ ), 3.91 ( 1 H, dqd, J $=10.25,6.20,2.56 \mathrm{~Hz}$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 21.2,22.8,24.3,26.5,39.5,40.3$, $52.2,60.9,68.0$; HRMS cal cd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}\left(\mathrm{M}^{+}\right) 157.1467$, found 157.1467.
[2R-(2S)]-1-Benzyloxycarbonyl-2-(2-hydroxybutyl)piperidine (8). A $1 \mathrm{M} \mathrm{MeLi-Et}{ }_{2} \mathrm{O}$ solution ( $2.82 \mathrm{~mL}, 2.82 \mathrm{mmol}$ ) was injected into a suspension of Cul ( $269 \mathrm{mg}, 1.41 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}(7.2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$, and the reaction mixture resulted in a clear solution. A solution of [2R-(2R)]-3 ( $260 \mathrm{mg}, 0.94$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4.3 \mathrm{~mL})$ was added to the lithium dimethyl cuprate solution at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 0.5 h. The reaction was warmed to $0^{\circ} \mathrm{C}$, stirred for 0.5 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, and evaporated. The residue was chromatographed using $20 \%$ EtOAchexane as eluent to yield 8 ( $228 \mathrm{mg}, 83 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}$ $+48.65^{\circ}$ (c 1.825, $\mathrm{CHCl}_{3}$ ); IR (neat) 3446, 2935, 2865, 1674, $1425,1350,1262,1172,1148,698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.42 \mathrm{~Hz}), 1.28-1.72(9 \mathrm{H}, \mathrm{m}), 2.02$ ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}$ ), 2.77-2.86 ( $2 \mathrm{H}, \mathrm{m}$ ), $3.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.96(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, \mathrm{J}=13.19 \mathrm{~Hz}), 4.33-4.38(1 \mathrm{H}, \mathrm{m}), 5.04(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=$ $15.93,12.64 \mathrm{~Hz}$ ), $7.18-7.28(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 10.1,19.1,25.5,25.6,29.2,29.2,30.5,37.7,39.7,49.0$, $67.3,67.4,71.5,128.0,128.1,128.2,128.3,128.4,128.4,128.6$, 137.0, 156.0. Anal. Cal cd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{N}, 4.81 ; \mathrm{C}, 70.07$; H , 8.65. Found: N, 4.52; C, 69.85; H, 8.58.
[2R-(2S)]-2-(2-Hydroxybutyl)piperidine [[2R-(2S)]-7]. A suspension of $8(224 \mathrm{mg}, 0.77 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OH})_{2}(22 \mathrm{mg})$ in $\mathrm{MeOH}(4.4 \mathrm{~mL})$ under a hydrogen atmosphere was stirred for 4 h . The mixture was filtered through a Celite pad, and the filtrate was evaporated. The residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $25 \%$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give 4 ( 121 mg , $100 \%$ ) as a solid: $\mathrm{mp} 53-4^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $[\alpha]^{25} \mathrm{D}+10.21^{\circ}$ (c 1.080 , EtOH); IR (KBr) 3302, 2925, 1453, 1324, 1121, $906,793 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.69 \mathrm{~Hz}), 1.92-$ 1.65 ( $9 \mathrm{H}, \mathrm{m}$ ), 1.77-1.84 (1 H, m), 2.52-2.62 (1 H, m), 2.69 ( 1 $\mathrm{H}, \mathrm{tt}, \mathrm{J}=10.99,2.75 \mathrm{~Hz}$ ), 2.98-3.05 ( $1 \mathrm{H}, \mathrm{m}$ ), 3.68-3.77 (1 $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.0,24,7,27.6,31.0,34.6$, 42.1, 46.2, 58.4, 74.6. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}: ~ \mathrm{~N}, 8.91$; C, 68.74; H, 12.18. Found: N, 8.91; C, 68.66; H, 12.18.
[2S-(2S)]-1-Benzyloxycarbonyl-2-(2-hydroxybutyl)piperidine (10). By a procedure similar to that for the preparation of 8, [2S-(2R)]-3 ( $402 \mathrm{mg}, 2.11 \mathrm{mmol}$ ) was converted with lithium dimethylcuprate prepared by $\mathrm{MeLi}(4.21 \mathrm{mmol})$ and Cul ( $402 \mathrm{mg}, 2.11 \mathrm{mmol}$ ) to $\mathbf{1 0}(260 \mathrm{mg}, 85 \%)$ as an oil: $[\alpha]^{25} \mathrm{D}$ $-30.83^{\circ}$ (c 1.435, $\mathrm{CHCl}_{3}$ ); IR (neat) 3447, 2935, 1670, 1424, $1259,697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.14 \mathrm{~Hz}), 1.05-1.16(1 \mathrm{H}, \mathrm{m}), 1.26-1.66(8 \mathrm{H}, \mathrm{m}), 1.86-1.96$ $(1 \mathrm{H}, \mathrm{m}), 2.60-2.70(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=12.64,2.75 \mathrm{~Hz}), 3.11-3.13$ ( $1 \mathrm{H}, \mathrm{m}$ ), 3.93-3.97 ( $2 \mathrm{H}, \mathrm{m}$ ), 4.41-4.46 (1 H, m), $5.06(2 \mathrm{H}$, ABq, J = 22.80, 11.81 Hz ), 7.20-7.28 ( $5 \mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.5,19.1,25.4,29.4,29.6,37.1,39.2,47.2$, $67.3,68.4,127.6,127.9,128.3,136.4,156.5$; HRMS cal cd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$291.1834, found 291.1829.
(+)-8-EthyInorlobenol-I [[2S-(2S)]-7]. By a procedure similar to that for the preparation of [2R-(2S)]-7, 10 ( 120 mg , $0.77 \mathrm{mmol})$ was converted with $\mathrm{Pd}(\mathrm{OH})_{2}(12 \mathrm{mg})$ in $\mathrm{MeOH}(2.4$ mL ) to [2S-(2S)]-7 (121 mg, 100\%): mp 89-90 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$, lit. ${ }^{13}$ $\mathrm{mp} 87^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+25.79^{\circ}$ (c $\left.1.380, \mathrm{EtOH}\right)$, lit. ${ }^{13}[\alpha]^{25} \mathrm{D}+22.3^{\circ}$ (c 1.56, EtOH); IR (KBr) 3272, 3148, 2992, 2926, 2832, 1452, $1342,1156,1102,972 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.91$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.42 \mathrm{~Hz}), 1.30-1.61(9 \mathrm{H}, \mathrm{m}), 1.79-1.81(1 \mathrm{H}, \mathrm{m})$, $2.55(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.81,2.75 \mathrm{~Hz}), 2.83-3.05(4 \mathrm{H}, \mathrm{m}), 3.75-$ 3.82 ( $1 \mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.4,25.0,26.3$, $30.8,31.6,41.7,47.1,55.0,70.7$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}\left(\mathrm{M}^{+}\right)$ 157.1593, found 157.1568 .
[2S-2(S)]-1-Benzyloxycarbonyl-2-(2-hydroxypropyl)piperidine [[2S-(2S)]-11]. Into a solution of [2S-(2R)]-3 (300 $\mathrm{mg}, 1.09 \mathrm{mmol}$ ) in THF ( 5.7 mL ) was injected a 1 M Super-Hydride-THF solution ( $4.36 \mathrm{~mL}, 4.36 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 15 min , a few pieces of
ice were added to it. After the reaction mixture was stirred for an additional 15 min at room temperature, excess $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to it. The organic solvent was washed with brine, dried, and evaporated. The residue was chromatographed using $20 \%$ EtOAc-hexane as eluent to yield [2S-(2S)]-11 (286 $\mathrm{mg}, 95 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}-28.52^{\circ}$ (c $2.920, \mathrm{CHCl}_{3}$ ); IR (neat) $3447,2935,1670,1425,1260,1176 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.20 \mathrm{~Hz}), 1.21-1.27(1 \mathrm{H}, \mathrm{m}), 1.40-$ $1.63(5 \mathrm{H}, \mathrm{m}), 1.72-1.75(1 \mathrm{H}, \mathrm{m}), 1.995(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=13.14$ $\mathrm{Hz}), 2.76(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.58,6.73 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.045$ $(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=12.82 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{s}), 4.52(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=$ $10.25 \mathrm{~Hz}), 5.145(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=22.11,9.83 \mathrm{~Hz}), 7.30-7.39(5$ $\mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 19.2,22.6,25.5,29.4$, 39.4, 47.5, 63.4, 67.6, 128.0, 128.2, 128.6, 136.6, 157.0. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$ : $\mathrm{N}, 5.05 ; \mathrm{C}, 69.28 ; \mathrm{H}, 8.36$. Found: N , 5.03; C, 68.86; H, 8.19.
(+)-Sedridine (9). A suspension of [2S-(2S)]-11 (220 mg, 0.79 mmol ) and $\mathrm{Pd}(\mathrm{OH})_{2}(22 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ under a hydrogen atmosphere was stirred for 12 h . The mixture was filtered through a Celite pad, and the filtrate was evaporated to give 9 ( $113 \mathrm{mg}, 100 \%$ ) as a sol id: $\mathrm{mp} 84-85^{\circ} \mathrm{C}$ (isopropyl ether - petrol eum ether), lit. ${ }^{15 \mathrm{~b}} \mathrm{mp} 83-84^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+28.36^{\circ}$ ( c 1.130, EtOH), lit. ${ }^{15 \mathrm{~b}}[\alpha]^{24} \mathrm{~d}+28.5^{\circ}$ (c 2.32, EtOH); IR (KBr) 3277, 3166, 2968, 2856, 2811, 1474, 1453, 1370, 1340, 1158, 1110, 1093, $1054 \mathrm{~cm}^{-1}$; 1 H NMR ( $500 \mathrm{MHz} \mathrm{CDCl}_{3}$ ) $\delta 1.175$ (3 $\mathrm{H}, \mathrm{d}, \mathrm{J}=6.41 \mathrm{~Hz}), 1.34-1.48(4 \mathrm{H}, \mathrm{m}), 1.55-1.61(3 \mathrm{H}, \mathrm{m})$, $1.80-1.82(1 \mathrm{H}, \mathrm{m}), 2.58(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.86 \mathrm{~Hz}, 2.78 \mathrm{~Hz}), 2.86-$ $2.90(1 \mathrm{H}, \mathrm{m}), 2.97(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.04-3.07(1 \mathrm{H}, \mathrm{m}), 4.125(1 \mathrm{H}$, dqd, J = 9.40, 6.20, 3.20 Hz); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 23.8, 24.9, 26.2, 31.4, 43.8, 47.1, 55.0, 65.3. Anal. Calcd for C8H17NO: N, 9.78; C, 67.09; H, 11.96. Found: N, 9.72; C, 66.63; H, 11.95.
[2R-(2S)]-1-Benzyloxycarbonyl-2-(2-hydroxypropyl)piperidine (11). Into a solution of [2R-(2R)]-3 (100 mg, 0.39 mmol ) in THF ( 1.9 mL ) was injected a 1 M Super-H ydrideTHF sol ution ( $1.56 \mathrm{~mL}, 1.56 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 15 min , a few pieces of ice were added to it. After the reaction mixture was stirred for an additional 15 min at room temperature, excess $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to it. The organic solvent was washed with brine, dried, and evaporated. The residue was chromatographed using 20\% EtOAc-hexane as eluent to yield $\mathbf{1 1}(83 \mathrm{mg}, 82 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+52.23^{\circ}$ (c $1.740, \mathrm{CHCl}_{3}$ ); IR (neat) 3446, 2934, 1684, 1560, $1424 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.19$ ( 3 H , br s), $1.41-1.63(7 \mathrm{H}, \mathrm{m}), 1.83-1.87(1 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 12.93 Hz ), $3.81(1 \mathrm{H}, \mathrm{br}$ s), $4.05(1 \mathrm{H}, \mathrm{br}$ s), $4.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 5.34 Hz ), $5.13(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=20.51,12.39 \mathrm{~Hz}$ ), $7.29-7.37(5$ $\mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 19.1, 23.8, 25.6, 29.5, 39.7, 40.1, 49.0, 66.4, 67.3, 128.0, 128.1, 128.6, 136.9, 156.1. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{N}, 5.05 ; \mathrm{C}, 69.28 ; \mathrm{H}, 8.36$. Found: N, 4.77; C, 68.83; H, 8.41.
(+)-Allosedridine (12). A suspension of $\mathbf{1 1}$ (229 mg, 0.83 mmol ) and $\mathrm{Pd}(\mathrm{OH})_{2}(23 \mathrm{mg})$ in $\mathrm{MeOH}(4.7 \mathrm{~mL})$ under a hydrogen atmosphere was stirred for 12 h . The mixture was filtered through a Celite pad, and the filtrate was evaporated to give 12 (119 mg, 100\%) as a solid: $\mathrm{mp} 61^{\circ} \mathrm{C}$, lit. ${ }^{17 \mathrm{a}} \mathrm{mp} 62-$ $63^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+17.10^{\circ}$ (c 1.550, MeOH), lit. ${ }^{17 \mathrm{a}}[\alpha]^{29} \mathrm{D}+16.2^{\circ}$ (c 4.01, MeOH); IR (KBr) 3691, 3676, 2924, 1655, 1438, 1367, 1331, 1054, $790 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.03-1.09$ $(1 \mathrm{H}, \mathrm{m}), 1.11(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.98 \mathrm{~Hz}), 1.21-1.31(2 \mathrm{H}, \mathrm{m}), 1.41-$ $1.52(2 \mathrm{H}, \mathrm{m}), 1.56-1.62(2 \mathrm{H}, \mathrm{m}), 1.77-1.80(1 \mathrm{H}, \mathrm{m}), 2.56(1$ $\mathrm{H}, \mathrm{td}, \mathrm{J}=13.89,2.99 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.68 \mathrm{~Hz}), 3.02(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=13.67 \mathrm{~Hz}$ ), $3.50(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J}=10.26$, $6.20,2.14 \mathrm{~Hz}$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.0,24.6,27.3$, 34.3, 44.4, 46.1, 58.1, 69.2. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}: \mathrm{N}, 9.78$; C, 67.09; H, 11.96. Found: N, 9.54; C, 67.18; H, 11.90.
[2S-(2R)]-1-Benzyloxycarbonyl-2-(2-hydroxypropyl)piperidine (ent-11). By a procedure similar to that for the preparation of [2R-(2S)]-11, [2S-(2S)]-3 (105 mg, 0.39 mmol$)$ was converted with Super-Hydride ( $\mathrm{LiEt}_{3} \mathrm{BH}, 1.0 \mathrm{M}$ in THF) ( $1.6 \mathrm{~mL}, 1.6 \mathrm{mmol}$ ) in THF ( 1.9 mL ) to ent-11 ( $85 \mathrm{mg}, 84 \%$ ): $[\alpha]^{25} \mathrm{D}-52.37^{\circ}$ (c 1.275, $\mathrm{CHCl}_{3}$ ).
(-)-Allosedridine (ent-12). By a procedure similar to that for the preparation of $\mathbf{1 2},[2 \mathrm{~S}-(2 \mathrm{R})]-\mathbf{1 1}$ was converted with $\mathrm{Pd}-$ $(\mathrm{OH})_{2}(8 \mathrm{mg})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ to ent-12 (119 mg, 95\%) as a
solid: $\mathrm{mp} 60-61{ }^{\circ} \mathrm{C}$, lit. ${ }^{17 \mathrm{a}} \mathrm{mp} 62-63{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-16.18^{\circ}$ (C 1.550, MeOH ), lit. ${ }^{17 \mathrm{a}}[\alpha]^{29} \mathrm{D}+16.2^{\circ}$ (c 4.01, MeOH) for 12.
(-)-N-Methylsedridine (13). By a procedure similar to that for the preparation of 6, [2S-(2R)]-3 ( $195 \mathrm{mg}, 0.71 \mathrm{mmol}$ ) was converted with $\mathrm{LiAlH}_{4}(53.8 \mathrm{mg}, 1.42 \mathrm{mmol})$ in THF ( 4.2 mL ) to $\mathbf{1 3}$ ( $116 \mathrm{mg}, 100 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}-32.99^{\circ}$ (c 0.675, EtOH), lit. ${ }^{12 \mathrm{~b}}\left[\alpha{ }^{23}{ }^{2} \mathrm{D}-31^{\circ}\right.$ (c 1.05, $96 \% \mathrm{EtOH}$ ); IR (neat) 3383, 2932, 2856, 2792, $1456 \mathrm{~cm}^{-1}$; 1 H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.155(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.20 \mathrm{~Hz}), 1.23-1.33(2 \mathrm{H}, \mathrm{m}), 1.48-1.62$ (3 $\mathrm{H}, \mathrm{m}), 1.69-1.78(2 \mathrm{H}, \mathrm{m}), 1.93-2.00(2 \mathrm{H}, \mathrm{m}), 2.16-2.19$ ( 1 $\mathrm{H}, \mathrm{m}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{J}=11.54 \mathrm{~Hz}), 4.225(1 \mathrm{H}$, dqd, $\mathrm{J}=10.68,5.98,2.99 \mathrm{~Hz}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 23.8, 24.7, 26.0, 29.9, 38.9, 44.3, 57.6, 63.1, 65.4; HRMS cal cd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}\left(\mathrm{M}^{+}\right)$157.1466, found 157.1479.
[2R-(2S)]-Phenylmethyl 2-(2-Hydroxypent-4-enyl)piperidinecarboxylate (14). By a procedure similar to that for the preparation of $5,[2 R-(2 R)]-3(149 \mathrm{mg}, 0.54 \mathrm{mmol})$ ) was converted with a 1 M vinylmagnesium bromide-THF solution $(0.81 \mathrm{~mL}, 0.81 \mathrm{mmol})$ in the presence of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(11 \mathrm{mg}$, 0.54 mmol ) to 14 ( $147 \mathrm{mg}, 90 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+44.05^{\circ}$ (c 2.250, $\mathrm{CHCl}_{3}$ ); IR (neat) 3446, 2936, 1674, 1427, 1354, 1264, 1171, 1074, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.35-1.71$ ( $7 \mathrm{H}, \mathrm{m}$ ), 1.77-1.87 ( $1 \mathrm{H}, \mathrm{m}$ ), 2.04-2.34 ( $2 \mathrm{H}, \mathrm{m}$ ), 2.80-2.95 $(2 \mathrm{H}, \mathrm{m}), 3.66(1 \mathrm{H}, \mathrm{br}$ s), 4.02-4.06(1 H, m), 4.44-4.48(1 H, m), 5.06-5.13 ( $4 \mathrm{H}, \mathrm{m}$ ), 5.76-5.79 ( $1 \mathrm{H}, \mathrm{m}$ ), 4.28-7.36 ( 5 H , $\mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 19.2,25.7,29.2,29.2,29.3$, 37.3, 37.4, 39.7, 42.1, 48.8, 67.2, 68.9, 68.9, 69.0, 69.0, 69.1, $69.1,69.1,69.2,117.8,117.9,118.02,127.9,128.0,128.5,134.8$, 136.8, 155.7; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right) 303.1834$, found 303.1841.
[2R-(2R)]-Phenylmethyl 2-(2-(2,5-Dioxopyrrolidinyl)-pent-4-enyl)piperidinecarboxylate (15). To a solution of 14 ( $145 \mathrm{mg}, 0.48 \mathrm{mmol}$ ) and $\mathrm{PPh}_{3}(375 \mathrm{mg}, 1.43 \mathrm{mmol}$ ) in THF $(4.8 \mathrm{~mL})$ was added dropwise a solution of diethyl azodicarboxylate (DEAD) ( $225 \mathrm{~mL}, 1.43 \mathrm{mmol}$ ) in THF ( 4.8 mL ) at -20 ${ }^{\circ} \mathrm{C}$. Succinimide ( $142 \mathrm{mg}, 1.43 \mathrm{mmol}$ ) was added to the mixture. Then the reaction mixture was slowly warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 4 h . The organic solvent was evaporated. The residue was chromatographed using $20 \%$ EtOAc-hexane as eluent to yield 15 ( $130 \mathrm{mg}, 70 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+65.74^{\circ}$ (c $1.510, \mathrm{CHCl}_{3}$ ); IR (neat) 2937, 1773, 1700, 1474, 1430, 1374, 1254, 1171, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.25-1.69$ ( $6 \mathrm{H}, \mathrm{m}$ ), 2.14-2.41 ( $4 \mathrm{H}, \mathrm{m}$ ), 2.52-2.71 ( $4 \mathrm{H}, \mathrm{m}$ ), 2.73-2.82 ( $1 \mathrm{H}, \mathrm{m}$ ), 4.02-4.27 ( $3 \mathrm{H}, \mathrm{m}$ ), 4.95-5.08 ( $4 \mathrm{H}, \mathrm{m}$ ), 5.61-5.72 ( $1 \mathrm{H}, \mathrm{m}$ ), $7.26-7.39(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 19.55, 25.98, 28.41, 28.74, 30.32, 37.39, 39.47, 47.40, 48.20, $67.31,117.98,127.90,128.49,134.55,136.95,155.30,178.30$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 384.2049$, found 384.2036.
(2R,7R,9R)-1.6-Diaza-7-propyltricyclo[7.4.0.02,6]tridecan-5-one (16). A suspension of 15 ( $60 \mathrm{mg}, 0.16 \mathrm{mmol}$ ) and $10 \%$ $\mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$ in $\mathrm{MeOH}(228 \mathrm{~mL})$ was stirred under hydrogen at 4 atm for 100 h . The mixture was filtered through a Celite pad, and the filtrate was evaporated. The residue was chromatographed using $1 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give 16 ( $31 \mathrm{mg}, 82 \%$ ) as a solid: $\mathrm{mp} 39-40{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+5.95^{\circ}$ (c 1.695 , $\mathrm{CHCl}_{3}$ ); IR (neat) 2933, 2859, 2799, 1690, 1421, 1305, 1274, $1090 \mathrm{~cm}^{-1}$; 1 H NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.14$ $\mathrm{Hz}), 1.18-1.88(14 \mathrm{H}, \mathrm{m}), 2.12-2.50(4 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\mathrm{J}=10.99 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.04 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ 7.14 Hz ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 14.28,19.76,24.62$, $25.50,29.96,32.95,33.02,35.00,46.88,49.78,56.49,73.62$, 77.40, 172.87; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{ON}_{2}\left(\mathrm{M}^{+}\right) 236.1888$, found 236.1867.
(+)-Tetraponerine-3 (T-3). To a suspension of $\mathrm{LiAlH}_{4}(78$ $\mathrm{mg}, 2.1 \mathrm{mmol}$ ) in THF ( 5.3 mL ) was added a solution of $\mathbf{1 6}$ (49 $\mathrm{mg}, 0.21 \mathrm{mmol}$ ) in THF ( 2.7 mL ) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 1 h at room temperature, the reaction mixture was refluxed for 6 h . To the mixture were successively added excess EtOAc and $10 \% \mathrm{NH}_{4} \mathrm{OH}$ with ice cooling. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined solvents were washed with brine, dried with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated. The residue was chromatographed using $1 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to yield T-3 (37 $\mathrm{mg}, 80 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+34.57^{\circ}\left(\mathrm{c} 0.505, \mathrm{CHCl}_{3}\right.$ ), lit. ${ }^{20 e}[\alpha]^{20} \mathrm{D}$
$+31^{\circ}$ (c 3.1, $\mathrm{CHCl}_{3}$ ); IR (neat) 2928, 2858, 2800, 2748, 1457, $1389,1353,1130,1117 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.93$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J})=7.26 \mathrm{~Hz}), 1.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 1.15-1.18$ ( $1 \mathrm{H}, \mathrm{m}$ ), 1.27-1.81 ( $14 \mathrm{H}, \mathrm{m}$ ), 1.89-1.95 ( $1 \mathrm{H}, \mathrm{m}$ ), 1.98-2.03 ( $1 \mathrm{H}, \mathrm{m}$ ), 2.74-2.81 ( $3 \mathrm{H}, \mathrm{m}$ ), 3.17-2.19 ( $1 \mathrm{H}, \mathrm{m}$ ), 3.27 ( 1 H , dd, J = 5.13, 2.35 Hz ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 14.4, 14.5, 20.6, 22.1, 25.0, 26.3, 30.4, 32.0, 33.1, 33.1, 33.9, 50.6, 50.8, 52.8, 56.7, 75.5, 75.6; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$222.2096, found 222.2087.
[2R-(2S)]-Phenylmethyl 2-(2-(2,5-Dioxopyrrolidinyl)-pent-4-enyl)piperidinecarboxylate (17). By a procedure similar to that for the preparation of $\mathbf{1 5 , 5} \mathbf{( 1 6 4 ~ m g , ~} 0.54 \mathrm{mmol})$ was converted by the Mitsunobu reaction using $\mathrm{PPh}_{3}(425 \mathrm{mg}$, 1.62 mmol ), DEAD ( $255 \mathrm{~mL}, 1.62 \mathrm{mmol}$ ), and succinimide ( 161 $\mathrm{mg}, 1.62 \mathrm{mmol})$ to $17(134 \mathrm{mg}, 65 \%)$ as an oil: $[\alpha]^{25} \mathrm{D}+42.70^{\circ}$ (c 1.470, $\mathrm{CHCl}_{3}$ ); IR (neat) 2937, 1772, 1700, 1425, 1370, 1256, 1187, 1135, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.35-1.67$ ( $6 \mathrm{H}, \mathrm{m}$ ), 1.82-1.91 ( $1 \mathrm{H}, \mathrm{m}$ ), 2.32-2.60 ( $6 \mathrm{H}, \mathrm{m}$ ), 2.61-2.84 ( $2 \mathrm{H}, \mathrm{m}$ ), 3.96-4.04 ( $1 \mathrm{H}, \mathrm{m}$ ), 4.08-4.18 ( $2 \mathrm{H}, \mathrm{m}$ ), 4.96-5.14 ( $4 \mathrm{H}, \mathrm{m}$ ), 5.52-5.66 ( $1 \mathrm{H}, \mathrm{m}$ ), 7.27-7.39 ( $5 \mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,25.7,28.1,28.7,36.3,39.8,48.9,50.1$, $67.3,77.4,117.9,128.0,128.6,134.5,137.0,155.3,177.7$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 384.2049$, found 384.2059.
(2R,7S,9R)-1.6-Diaza-7-propyltricyclo[7.4.0.0 ${ }^{2,6}$ ]tridecan-5-one (18). By a procedure similar to that for the preparation of $16,17(42 \mathrm{mg}, 0.11 \mathrm{mmol})$ was converted with reduction using $10 \% \mathrm{Pd} / \mathrm{C}(42 \mathrm{mg}$ ) to 18 ( $19 \mathrm{mg}, 73 \%$ ) as a solid: mp $58-60^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+80.94^{\circ}$ (c 1.015, $\mathrm{CHCl}_{3}$ ); IR (neat) 2956, 2930, $2856,2757,1702,1439,1421,1278 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.94(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.26 \mathrm{~Hz}), 1.26-1.45(5 \mathrm{H}, \mathrm{m}), 1.54-$ $1.64(3 \mathrm{H}, \mathrm{m}), 1.69-2.00(6 \mathrm{H}, \mathrm{m}), 2.07-2.14(1 \mathrm{H}, \mathrm{m}), 2.24-$ $2.31(1 \mathrm{H}, \mathrm{m}), 2.40-2.50(2 \mathrm{H}, \mathrm{m}), 2.97-2.99(1 \mathrm{H}, \mathrm{m}), 3.15-$ $3.19(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.20 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 14.43,19.78,23.95,24.37,25.54,31.34,32.66,34.00$, 38.34, 49.55, 56.97, 61.83, 80.36, 174.74; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{ON}_{2}\left(\mathrm{M}^{+}\right) 236.1888$, found 236.1821.
(+)-Tetraponerine-4 (T-4). By a procedure similar to that for the preparation of $\mathbf{T}-\mathbf{3}, 18(46 \mathrm{mg}, 0.19 \mathrm{mmol})$ was converted with $\mathrm{LiAlH}_{4}(72 \mathrm{mg}, 1.9 \mathrm{mmol})$ in THF ( 5 mL ) to T-4 (38 mg, $90 \%$ ) as an oil: $[\alpha]^{15} \mathrm{D}+107.25^{\circ}\left(\mathrm{c} 1.155, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{20 e}[\alpha]^{20} \mathrm{D}+105^{\circ}$ ( $\mathrm{c} 0.3, \mathrm{CHCl}_{3}$ ); IR (neat) 2932, 2857, 2790, 1378, 1338, 1191, $1157 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 0.88$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.16 \mathrm{~Hz}), 1.15-1.54(11 \mathrm{H}, \mathrm{m}), 1.59-1.74(7 \mathrm{H}$, m), 1.97-2.02 ( $1 \mathrm{H}, \mathrm{m}$ ), 2.06-2.11 ( $1 \mathrm{H}, \mathrm{m}$ ), 2.27-2.30 ( 1 H , m), 2.80-2.82 ( $1 \mathrm{H}, \mathrm{m}$ ), $3.11(1 \mathrm{H}$, ddd, $\mathrm{J}=8.12,8.12,2.56$ Hz ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 14.78,18.64,20.14,25.04$, 25.16, 29.64, 32.91, 36.83, 37.88, 48.90, 48.99, 51.48, 61.15, 62.62, 85.48, 85.55; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$222.2096, found 222.2077.
[2R-(2S)]-Phenylmethyl 2-(2-Hydroxyheptyl)piperidinecarboxylate (19). To a suspension of Cul ( $415 \mathrm{mg}, 2.18$ mmol ) in $\mathrm{Et}_{2} \mathrm{O}(5.5 \mathrm{~mL})$ was added a 1.6 M n-butyllithiumhexane sol ution ( $2.7 \mathrm{~mL}, 4.36 \mathrm{mmol}$ ) at $-45{ }^{\circ} \mathrm{C}$. A solution of [2R-(2R)]-3 (300 mg, 1.09 mmol$)$ in $\mathrm{Et}_{2} \mathrm{O}(1.1 \mathrm{~mL})$ was added to the reaction mixture at $-70^{\circ} \mathrm{C}$. After being stirred for 2 h , the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried, and evaporated. The residue was chromatographed using 13\% EtOAc-hexane as eluent to give 19 ( $287 \mathrm{mg}, 79 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+41.97^{\circ}$ (c 1.215, $\mathrm{CHCl}_{3}$ ); IR (neat) 3446, 2931, 2857, 1669, 1425, 1261, 1171, $697 \mathrm{~cm}^{-1}$; 1 H NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.87 \mathrm{~Hz}), 1.25-1.81(16 \mathrm{H}, \mathrm{m}), 2.85-2.94(2$ H, m), 3.60-3.61 ( $1 \mathrm{H}, \mathrm{m}$ ), $4.04(1 \mathrm{H}, \mathrm{br}$ d, J $=12.09 \mathrm{~Hz}), 4.43-$ $4.46(1 \mathrm{H}, \mathrm{m}), 5.12(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=13.74,12.64 \mathrm{~Hz}), 7.29-7.36$ ( $5 \mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.24,19.09,22.81$, 25.51, 25.62, 29.12, 31.99, 37.67, 37.99, 39.66, 48.90, 67.14, 69.96, 127.77, 127.86, 128.39, 136.74, 155.64; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right) 333.2304$, found 333.2290.
[2R-(2R)]-Phenylmethyl 2-(2-(2,5-Dioxopyrrolidinyl)heptyl)piperidinecarboxylate (20). By a procedure similar to that for the preparation of $\mathbf{1 5}, 19(130 \mathrm{mg}, 0.39 \mathrm{mmol})$ was converted by the Mitsunobu reaction using $\mathrm{Ph}_{3} \mathrm{P}$ ( 307 mg , 1.17 mmol ), DEAD ( $184 \mathrm{~mL}, 1.17 \mathrm{mmol}$ ), and succinimide ( 116 mg , 1.17 mmol ) in THF ( 3.9 mL ) to $\mathbf{2 0}$ ( $129 \mathrm{mg}, 80 \%$ ) as an oil:
$[\alpha]^{25}{ }_{\mathrm{D}}+76.52^{\circ}\left(\mathrm{c} 2.58, \mathrm{CHCl}_{3}\right)$; IR (neat) 2931, 2858, 1772, 1700, 1472, 1429, 1373, 1254, 1171, 698, $668 \mathrm{~cm}^{-1}$ ' $^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.59 \mathrm{~Hz}), 1.24-1.79(12 \mathrm{H}$, m), 2.16-2.29 ( $4 \mathrm{H}, \mathrm{m})$, 2.64 ( $4 \mathrm{H}, \mathrm{br}$ s), 2.73-2.78 ( $1 \mathrm{H}, \mathrm{m}$ ), 4.00-4.18 ( $3 \mathrm{H}, \mathrm{m}$ ), 4.99-5.05 ( $2 \mathrm{H}, \mathrm{m}$ ), 7.29-7.36 ( $5 \mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.24,19.50,22.70,25.97,26.36$, $28.47,28.73,30.53,31.76,32.84,39.41,47.32,48.88,67.23$, 127.83, 128.43, 136.93, 155.25, 178.42; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 414.2519$, found 414.2487.
(2R,7R,9R )-1.6-Diaza-7-pentyltricyclo[7.4.0.0 ${ }^{2,6}$ ]tridecan-5-one (21). By a procedure similar to that for the preparation of 16, $\mathbf{2 0}(60 \mathrm{mg}, 0.145 \mathrm{mmol})$ was converted with reduction using 10\% Pd/C ( 60 mg ) in $\mathrm{CH}_{3} \mathrm{OH}(206 \mathrm{~mL})$ to $21(30 \mathrm{mg}$, $79 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+3.15^{\circ}$ (c 1.525, $\mathrm{CHCl}_{3}$ ); IR (neat) 2931, 2857, 2798, 1694, 1421, $1276 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.85(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.59 \mathrm{~Hz}), 1.18-1.86$ ( $18 \mathrm{H}, \mathrm{m}$ ), 2.15-2.43 ( 4 $\mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=10.99 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=6.04$ Hz ), 4.14-4.16 ( $1 \mathrm{H}, \mathrm{m}$ ); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3$, 22.8, 24.6, 25.5, 26.1, 29.9, 30.8, 32.0, 32.9, 34.9, 47.1, 49.7, 50.4, 73.6, 77.4, 172.8; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{ON}_{2}\left(\mathrm{M}^{+}\right)$ 264.2201, found 264.2222.
(+)-Tetraponerine-7 (T-7). By a procedure similar to that for the preparation of $\mathbf{T}-\mathbf{3}, 21$ ( $63 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) was converted with reduction using $\mathrm{LiAlH}_{4}(90 \mathrm{mg}, 2.4 \mathrm{mmol})$ in THF ( 3.5 mL ) to T-7 ( $48 \mathrm{mg}, 80 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+30.91^{\circ}$ (c 1.1350, $\mathrm{CHCl}_{3}$ ), lit. ${ }^{20 e}[\alpha]^{20} \mathrm{D}+30^{\circ}$ (c 2.8, $\mathrm{CHCl}_{3}$ ); IR (neat) 2931, 2857, 2798, 1694, 1421, $1276 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 0.92(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.05 \mathrm{~Hz}), 1.10(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=2.35 \mathrm{~Hz})$, 1.11-1.82 (19 H, m), $1.93(1 \mathrm{H}$, ddd, J $=12.81,12.81,5.55$ Hz ), 2.02-2.05 (1 H, m), 2.76-2.82 (3H, m), 3.15-3.18 (1 H, m), $3.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.70 \mathrm{~Hz}, 2.78 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 14.38,22.16,23.19,25.18,26.46,27.35,30.46,31.02$, $32.15,32.46,34.17,50.58,50.93,53.25,56.68,75.42,75.46$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 250.2409$, found 250.2404 .
[2R-(2R)]-Phenylmethyl 2-(2-Hydroxyheptyl)piperidinecarboxylate [[2R-(2R)]-19]. By a procedure similar to that for the preparation of 19, [2R-(2S)]-3 ( $300 \mathrm{mg}, 1.09 \mathrm{mmol}$ ) was converted with $\mathrm{n}-\mathrm{Bu}_{2} \mathrm{CuLi}(2.18 \mathrm{mmol})$ to $[2 \mathrm{R}-(2 \mathrm{R})]-19$ ( $326 \mathrm{mg}, 90 \%$ ) as an oil: $[\alpha]^{25} \mathrm{D}+25.12^{\circ}$ (c $1.0550, \mathrm{CHCl}_{3}$ ); IR (neat) 3462, 2933, 2858, 1670, 1430, 1353, 1258, 1174, 697 $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.87 \mathrm{~Hz})$, $1.15-1.80(15 \mathrm{H}, \mathrm{m}), 1.95-2.05(1 \mathrm{H}, \mathrm{m}), 2.70-2.79(1 \mathrm{H}, \mathrm{m})$, $3.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.04-4.05(2 \mathrm{H}, \mathrm{m}), 4.51-4.55(1 \mathrm{H}, \mathrm{m}), 5.15$ $(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=28.02 \mathrm{~Hz}, 12.09 \mathrm{~Hz}), 7.29-7.40(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.3,19.3,22.9,25.6,26.0,29.5,32.1$, $36.9,37.7,39.4,47.4,67.3,67.5,127.8,128.1,128.5,136.6$, 156.7; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right) 333.2304$, found 333.2279.
[2R-(2S)]-Phenylmethyl 2-(2-(2,5-Dioxopyrrolidinyl)heptyl)piperidinecarboxylate [2R-(2S)]-20. By a procedure similar to that for the preparation of $\mathbf{1 5},[2 R-(2 R)]-19$ ( 167 mg , 0.50 mmol ) was converted by the Mitsunobu reaction with $\mathrm{PPh}_{3}(393 \mathrm{mg}, 1.50 \mathrm{mmol})$, DEAD ( $236 \mathrm{~mL}, 1.50 \mathrm{mmol}$ ), and succinimide ( $149 \mathrm{mg}, 1.50 \mathrm{mmol}$ ) to [2R-(2S)]-20 ( $171 \mathrm{mg}, 83 \%$ ) as an oil: $[\alpha]^{25}{ }^{\mathrm{D}}+24.98^{\circ}\left(\mathrm{c} 1.70, \mathrm{CHCl}_{3}\right.$ ); IR (neat) 2930, 2859, 1772, 1698, 1425, 1371, 1262, $1185 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.59 \mathrm{~Hz}), 1.10-1.58(13 \mathrm{H}, \mathrm{m}), 1.77-$ $1.86(1 \mathrm{H}, \mathrm{m}), 1.92-1.96(1 \mathrm{H}, \mathrm{m}), 2.27-2.55(5 \mathrm{H}, \mathrm{m}), 2.74-$ $2.83(1 \mathrm{H}, \mathrm{m}), 3.99-4.12(3 \mathrm{H}, \mathrm{m}), 5.02-5.11(2 \mathrm{H}, \mathrm{m}), 7.29-$ $7.42(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.3,19.2,22.8$, 25.7, 26.4, 28.2, 28.7, 31.6, 31.7, 32.1, 39.8, 48.9, 48.9, 50.9, $67.2,67.3,77.4,128.0,128.0,128.5,136.9,155.2,177.9$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 414.2518$, found 414.2530 .
(2R,7S,9R)-1,6-Diaza-7-pentyltricyclo[7.4.0.0 ${ }^{2,6}$ ]tridecan-5-one ( $2 R, 7 \mathrm{~S}, 9 \mathrm{R}$ )-21. A suspension of [2R-(2S)]-20 ( 63 mg , 0.152 mmol ) in $\mathrm{MeOH}(206 \mathrm{~mL})$ was stirred under hydrogen at 5 atm in the presence of $\mathrm{Pd}(\mathrm{OH})_{2}(12.6 \mathrm{mg})$ for 100 h . The mixture was filtered through a Celite pad, and the filtrate was evaporated. The residue was chromatographed using 1\% $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give ( $2 \mathrm{R}, 7 \mathrm{~S}, 9 \mathrm{R}$ )-21 ( $22 \mathrm{mg}, 55 \%$ ) as an oil: $[\alpha]^{25}$ D $+63.50^{\circ}$ (c 1.055, $\mathrm{CHCl}_{3}$ ); IR (neat) 2931, 2856, 2799, 2758, 1700, 1420, 1377, 1341, $1276 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.59 \mathrm{~Hz}), 1.24-2.48(22 \mathrm{H}$, m), $2.96(1 \mathrm{H}, \mathrm{br}$ d, J $=10.99 \mathrm{~Hz}), 3.11-3.20(1 \mathrm{H}, \mathrm{m}), 3.49(1$ $\mathrm{H}, \mathrm{t}, \mathrm{J}=6.59 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.4,23.0$, 24.0, 24.4, 25.5, 26.3, 31.3, 31.8, 32.2, 32.6, 38.3, 49.5, 57.1, 61.8, 80.3, 174.7; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{ON}_{2}\left(\mathrm{M}^{+}\right)$264.2202, found 264.2206 .
(+)-Tetraponerine-8 (T-8). By a procedure similar to that for the preparation of T-3, (2R,7S,9R)-21 ( $40 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) was converted with reduction using $\mathrm{LiAlH}_{4}(57 \mathrm{mg}, 1.51 \mathrm{mmol}$ ) in THF ( 4.3 mL ) to T-8 ( $32 \mathrm{mg}, 85 \%$ ) a solid: $\mathrm{mp} 38-40^{\circ} \mathrm{C}$, lit. ${ }^{20 e} \mathrm{mp} 40^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+98.18^{\circ}$ ( $\mathrm{c} 0.70, \mathrm{CHCl}_{3}$ ), lit. ${ }^{20 \mathrm{e}}[\alpha]^{20} \mathrm{D}+99^{\circ}$ (c 0.6, $\mathrm{CHCl}_{3}$ ); IR (neat) 2930, 2857, 2789, 2704, 2509, 1377, $1338 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.05$ $\mathrm{Hz}), 1.16-1.77(22 \mathrm{H}, \mathrm{m}), 2.01-2.14(2 \mathrm{H}, \mathrm{m}), 2.29-2.32(1 \mathrm{H}$, $\mathrm{m}), 2.83(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}=9.61 \mathrm{~Hz}), 3.13-3.17(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 14.3,20.2,23.1,25.1,25.2,26.2,29.7,32.8$, 32.9, 34.6, 37.9, 49.0, 51.5, 61.3, 62.6, 85.6; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{3} \mathrm{ON}_{2}\left(\mathrm{M}^{+}\right)$250.2409, found 250.2398.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.
J O991034W


[^0]:    $\dagger$ Toyama Medical and Pharmaceutical University.
    $\ddagger$ National Institute of Radiological Sciences.
    (1) (a) Elbein, A. D.; Molyneux, R. In Alkaloids; Chemical and Biological perspectives; Pelletier, S. W., Ed.; J ohn Wiley and Sons: New York, 1987; Vol. 57, p 1. (b) O'Hagen, D. Nat. Prod. Rep. 1997, 14, 637.
    (2) (a) Sterino, C.; Stehle, N.; Park, Y. S.; Florio, S.; Beak, P. J. Org. Chem. 1999, 64, 1160. (b) Pilli, R. A.; de Fatima Alves, C.; Bockelmann, M. A.; Mascarenhas, Y. P.; Nery J. G.; Vencato, I. Tetrahedron Lett. 1999, 40, 2891. (c) Katritzky, A. R.; Qiu, G.; Y ang, B.; Steel, P. J. J . Org. Chem. 1998, 63, 6699. (d) Reding, M. T.; Buchwald, S. L. J. Org. Chem. 1998, 63, 6344. (e) Weymann, M.; Pfrengle, W.; Schollmeyer, D.; Kuntz. H. Synthesis 1997, 1151. (f) Munchhof, J. M.; Meyers, A. I. J. Org. Chem. 1995, 60, 7084.
    (3) (a) Takahata, H.; Bandoh, H.; Hanayama, M.; Momose, T. Tetrahedron: Asymmetry 1992, 3, 607. (b) Takahata, H.; Inose, K.; Momose, T. Heterocycles 1994, 38, 269.
    (4) Takahata, H.; K ubota, M.; Takahashi, S.; Momose, T. Tetrahe dron: Asymmetry 1996, 7, 3047.
    (5) For an excellent review, see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
    (6) (a) Takahata, H.; Takahashi, S.; K ouno S.; Momose, T. J . Org. Chem. 1998, 63, 2224. (b) Takahata, H.; Kouno S.; Momose, T. Tetrahedron: Asymmetry 1995, 6, 1085.

[^1]:    (7) Baba, S. E.; Sartor, K.; Poulin, J .-C.; Kagan, H. B. Bull. Soc. Chim. Fr. 1994, 131, 525.
    (8) A part of this work has been published as a preliminary communication. Takahata, H.; Kubota, M.; Momose, T. Tetrahedron Lett. 1997, 38, 3451.
    (9) Crispino, G. A.; J eong, K.-S.; K olb, H. C.; Wang, Z.-M.; Xu, D.; Sharpless, K. B. J. Org. Chem. 1993, 58, 3785.

[^2]:    (10) K olb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48, 10515.
    (11) (a) Micel, K.-H.; Sandberg, F.; Haglid, F.; N orin, T. Acta Pharm. Suec. 1967, 4, 97. (b) Micel, K.-H.; Sandberg, F.; Haglid, F.; Norin, T.; Chan, R. P. K.; Craig, J. C. Acta Chem. Scand. 1969, 23, 3479.

[^3]:    (16) Recently, the same correction of the absolute configuration of (+)-8-ethylnorlobelol-I was proposed. Mill, S.; Durant, A.; Hootelé, C. Liebigs Ann. 1996, 2083.

[^4]:    (17) (a) Schöpf, C.; Gams, E.; Koppernock, F.; Rausch, R. Wallbe, R. Liebigs Ann. Chem. 1970, 732, 181. (b) Stevens, J. F.; T'H art, H.; Hendriks, H.; Malingré, T. M. Phytochemistry 1992, 31,' 3917.
    (18) The absolute configurations of both allosedridine (12) and N -methylsedridine (13) remain unknown.
    (19) (a) Merlin, P.; Breakman, J .-C.; Daloze, D.; Pasteels, J.-M. J. Chem. Ecol. 1988, 14, 517. (b) Breakman, J .-C.; Daloze, D.; Pasteels, J.-M.; Vanhecke, P.; Declercq, J.-P.; Sinnwell, V.; Franke, W. Z. Naturforsch. 1987, 42C, 627.

[^5]:    (20) Racemic form: (a) Merlin, P.; Breakman, J.-C.; Dal oze, D. Tetrahedron Lett. 1988, 29, 1691. (b) J ones, T. H. Tetrahedron Lett. 1990, 31, 1535. (c) J ones, T. H. Tetrahedron Lett. 1990, 31, 4543. (d) Barluenga, J. Tomás, M.; Kouznetsov, V.; Rubio, E. J. Org. Chem. 1994, 59, 3699. Chiral form: (e) Yue, C.; Gauthier, I.; Royer, J .; Husson, H.P. J. Org. Chem. 1996, 61, 4949. (f) Marcours, P.; Breakman, J.-C.; Daloze, D. Tetrahedron 1995, 51, 1415.
    (21) Under an atmosphere of hydrogen, only the hydrogenolysis of N-Cbz proceeded to give no cyclized product. Cf. Scovill, J. P.; Burckhalter, J. H. J. Heterocycl. Chem. 1980, 17, 23.

